Scopri

Stabilità dei Sistemi a Ciclo Chiuso ( a retroazione )

--> Clicca qui per la bibliografia

Lo Studio della Stabilità dei Sistemi a ciclo chiuso o a retroazione

 
Un primo possibile metodo per studiare la stabilità dei sistemi di controllo a contoreazione è quello generale valido per tutti gli altri sistemi : si prende la rappresentazione in spazio di stato , o la rappresentazione implicita mediante trasformate, e si analizza la posizione nel piano complesso dei poli a ciclo chiuso.

Criteri per sistemi MIMO in spazio di stato

Partendo dalla rappresentazione in spazio di stato e ricordando le definizioni della stabilità date nel paragrafo precedente, si possono enunciare i seguenti teoremi : 

TEOREMA 1 : Un sistema L.S.D.O.F. è stabile internamente nell'origine se tutti gli autovalori semplici della matrice dinamica sono a parte reale non positiva e se gli autovalori multipli sono a parte reale strettamente negativa.
TEOREMA 2 : Un sistema L.S.D.O.F. è stabile asintoticamente internamente nell'origine se tutti gli autovalori della matrice dinamica sono a parte reale strettamente negativa.
TEOREMA 3 : Un sistema L.S.D.O.F. è stabile esternamente (BIBO) se gli autovalori semplici della matrice dinamica relativi a modi osservabili sono a parte reale non positiva e gli autovalori multipli relativi a modi osservabili sono a parte reale strettamente negativa.
TEOREMA 4 : Un sistema L.S.D.O.F. è stabile esternamente nella condizione iniziale nulla se gli autovalori della matrice A relativi a modi raggiungibili ed osservabili sono a parte reale negativa.
Con riferimento alla rappresentazione in spazio di stato (1) del paragrafo precedente, la matrice dinamica per il processo è la matrice A e quindi ad essa vanno applicati i criteri sopra esposti. Considerando invece un sistema retroazionato, si deve prima analizzare come viene modificata questa matrice , per poi applicare i criteri alla dinamica complessiva. 
Considerando per semplicità la seguente rappresentazione in spazio di stato ( si è trascurato il disturbo z e si è indicato con e l'ingresso sul ramo diretto , poiché il controllore elabora il segnale errore e non il set-point ) :
e supponendo di realizzare una retroazione dall'uscita con una matrice di costanti K :
Figura 1 : Lo schema con retroazione costante considerato
le equazioni in spazio di stato del sistema a ciclo chiuso saranno :
I criteri espressi nei teoremi 1,2,3,4 andranno quindi applicati alla matrice A-BKC.

Criteri per sistemi MIMO rappresentati con matrici di trasferimento

Agli stessi criteri ed alle stesse conclusioni si può pervenire partendo dalla rappresentazione implicia mediante trasformate. Lo schema di figura 2 suggerisce infatti che gli autovalori della matrice dinamica coincidono coi poli della  , gli autovalori osservabili coincidono con i poli della matrice  , mentre gli autovalori osservabili e raggiungibili coincidono coi i poli della matrice W(s).
Figura 2 : La relazione fra gli autovalori della matrice dinamica e i poli delle matrici di trasferimento
 
I teoremi precedenti si possono quindi riformulare come segue :
TEOREMA 1A : Un sistema L.S.D.O.F. è stabile internamente nell'origine se tutti i poli semplici della  sono a parte reale non positiva e i poli multipli sono a parte reale strettamente negativa.
TEOREMA 2A : Un sistema L.S.D.O.F. è stabile asintoticamente internamente nell'origine se tutti i poli della  sono a parte reale strettamente negativa. 
TEOREMA 3A : Un sistema L.S.D.O.F. è stabile esternamente (BIBO) se i poli semplici della matrice  sono a parte reale non positiva e i poli multipli sono a parte reale strettamente negativa.
TEOREMA 4A : Un sistema L.S.D.O.F. è stabile esternamente nella condizione iniziale nulla se i poli della W(s) sono a parte reale negativa.
 
Per rendere operativi questi criteri non resta che calcolare le matrici indicate. Per il sistema originario valgono le seguenti relazioni:


 ,
mentre per il sistema retroazionato è sufficiente, come visto in precedenza, sostituire A con A-BKC.

Criteri per sistemi SISO raggiungibili ed osservabili

Se il sistema è raggiungibile ed osservabile i poli della  , della  e della W(s) coincidono , pertanto, come si è osservato nelle lezioni precedenti, la stabilità interna, la stabilità esterna e la stabilità esterna nell'origine sono equivalenti : d'ora in poi si parlerà quindi indistintamente di stabilità. D'ora in poi si considerà il caso di sistemi SISO ( Single Input Single Output) , per i quali dim(u)=dim(y)=1 : la W(s) fra ingresso ed uscita del sistema a ciclo chiuso , quindi, non è più una matrice di funzioni razionali, ma una funzione razionale. Lo studio della stabilità può avvenire studiando le radici del denominatore della :


ovvero  . Un utile strumento per determinare quando le radici di questo polinomio siano a parte reale negativa è il Criterio di Routh , che permette di stabilire il segno delle radici del polinomio ( della loro parte reale, se complesse ) , senza doverle calcolare esplicitamente. 

Teorema di Routh e Criterio di Routh

Dato il polinomio  si costruisca la seguente matrice (detta matrice di Routh-Hurwitz in omaggio all'altro matematico che formulò un criterio analogo parallelamente a Routh) :


dove  ,  e i coefficienti ci, di, ecc si costruiscono con la stessa regola procedendo verso il basso ( l'ultima riga conterrà un solo elemento e quindi non sarà più possibile calcolare altri coefficienti). 

Il Teorema di Routh afferma che il numero di radici nel semipiano a parte reale positiva è pari ai cambiamenti di segno presenti nella prima colonna di tale matrice . Il criterio di stabilitàderivato da questo teorema afferma quindi che condizione necessaria e sufficiente perché tutte le radici di  siano a parte reale negativa è che , supposto an>0 , tutti i coefficienti della prima colonna della tabella di Routh siano positivi.

In realtà prima di costruire la tabella di Routh è buona regola verificare il segno dei coefficienti stessi del polinomio ; si può infatti dimostrare che condizione necessaria perché le radici siano tutte a parte reale negativa è che tutti i coefficienti a0,...,an siano positivi . Pertanto se anche un solo coefficiente manca o è negativo si può concludere che il sistema a ciclo chiuso non è stabile asintoticamente ( criterio di instabilità ).

--> Clicca qui per la bibliografia

Read more...

Stabilità dei sistemi di controllo

--> Clicca qui per la bibliografia

La Stabilità dei Sistemi di Controllo

L'analisi e la sintesi dei sistemi di controllo considerati in questi appunti farà sempre riferimento a sistemi lineari, stazionari , di ordine finito . Considerando quindi la rappresentazione in spazio di stato nel caso di sistemi a tempo continuo, questa sarà del tipo differenziale: 

Le definizioni di stabilità si riferiranno a questa rappresentazione, ma in seguito si passerà alla rappresentazione esterna mediante funzioni di trasferimento : il criterio di Nyquist verrà formulato a partire dalla funzione di trasferimento in catena diretta F(s). Il passaggio da una rappresentazione all'altra si ottiene scrivendo le espressioni dell'evoluzione dello stato e dell'uscita :
ed effettuandone la trasformazione secondo Laplace :

Si supporrà inoltre che le condizioni iniziali siano sempre nulle : 

Stabilità Interna

La stabilità interna riguarda la limitatezza della risposta x(t) descritta in (2) rispetto a perturbazioni dello stato iniziale. In generale la stabilità interna è una proprietà che riguarda una traiettoria e dipende quindi dallo stato iniziale e dall'ingresso. Fra tutte le traiettorie, quelle più interessanti da studiare sono i punti di equilibrio ( un punto si dice di equilibrio se , per almeno un ingresso, la traiettoria che ha origine nel punto coincide col punto stesso ), perché lo studio della stabilità di una qualsiasi traiettoria si può ricondurre allo studio della stabilità di un punto di equilibrio( considerando il sistema errore ).
Un punto di equilibrio xe si dice stabile se , comunque prendiamo  , esiste  tale che , se  , allora  in ogni istante di tempo successivo all'istante iniziale. In particolare, considerando sistemi tempo-invarianti , si può prendere l'istante iniziale nullo. Se, oltre ad essere verificata la condizione precedente, esiste anche  tale che  , allora il punto di equilibrio si dice asintoticamente stabile. 
Nei sistemi lineari la stabilità di un qualsiasi movimento equivale alla stabilità dell'origine del sistema libero associato ( B,M=0 in (1) ) , pertanto si può parlare di stabillità del sistema (che nel caso generale è invece una dicitura impropria) . In base alla definizione precedente, quindi , il sistema è stabile se comunque prendiamo  , esiste  tale che , se  , allora  in ogni istante di tempo successivo a quello iniziale .

Stabilità esterna o stabilità BIBO

La stabilità esterna o BIBO ( bounded input, bounded output ) si ha se , comunque prendiamo un limite superiore per l'ingresso  e uno stato iniziale  , allora esiste un limite superiore per l'uscita  , cioè se è  allora .
Si intuisce facilmente che questa condizione può essere verificata anche se una componente dello stato è illimitata ma , per questioni di osservabilità , non produce effetti sull'uscita , pertanto la stabilità esterna è una condizione meno stringente della stabilità interna : se un sistema lineare è stabile internamente nell'origine allora è anche esternamente stabile . Perché valga il viceversa deve invece essere verificata anche l'osservabilità , perciò un sistema stabile esternamente e osservabile è anche stabile internamente.

Stabilità esterna ( BIBO ) nello stato zero

La stabilità BIBO nell'origine è una proprietà ancora meno stringente della stabilità BIBO : nella definizione precedente, infatti, l'illimitatezza della y(t) poteva dipendere tanto dall'ingresso quanto dallo stato iniziale  . Se la condizione iniziale viene presa nulla si perviene alla seguente definizione : un sistema lineare si dice stabile esternamente nell'origine se , comunque si prende  esiste un  tale che , se l'ingresso è limitato superiormente da M ( ) , allora anche l'uscita è limitata superiormente da Nm ( ) . 
Se un sistema è stabile esternamente è anche stabile esternamente nell'origine, mentre perché valga il viceversa deve essere soddisfatta la condizione di raggiungibilità : se un sistema è stabile esternamente nell'origine e raggiungibile , allora è anche stabile esternamente.

Raggiungibilità ed Osservabilità dei sistemi considerati

Nel proseguio di questi appunti si studierà la stabilità dei sistemi di controllo a partire dalla rappresentazione esterna ingresso/uscita , cioè mediante la funzione di trasferimento W(s) in (2). L'unica stabilità che si può dedurre da questa funzione è la stabilità esterna con condizione iniziale nulla : d'ora in poi s'ipotizzerà pertanto che i sistemi studiati siano raggiungibil ed osservabili . Per quanto detto finora, si può infatti affermare che se un sistema è raggiungibile ed osservabile allora la stabilità esterna con condizione iniziale nulla equivale alla stabilità interna, come mostrato in figura 1.
Figura 1: le relazioni fra le varie definizioni di stabilità presentate in questo paragrafo

--> Clicca qui per la bibliografia

Read more...

I requisiti di un sistema di controllo

--> Clicca qui per la bibliografia

I requisiti di un sistema di controllo : fedeltà di risposta e stabilità

Quando si affronta la sintesi di un sistema di controllo i due requisiti fondamentali che vanno soddisfatti sono :

- la stabilità . A breve saranno date le definizione rigorose di stabilità : intuitivamente si può vedere la stabilità come la capacità del sistema di reagire a perturbazioni limitate con risposte limitate . Le perturbazioni possono essere variazioni delle condizioni iniziali o degli ingressi , mentre la risposta può essere nello stato o in uscita : si parla così di stabilità interna nell'origine, di stabilità esterna , di stabilità esterna nell'origine .

- la fedeltà di risposta , cioè la capacità del sistema di produrre uscite conformi a quelle desiderate . Tale conformità va studiata in relazione agli ingressi forniti al sistema, ai disturbi e alle variazioni parametriche.

Si intuisce come , prima di affrontare la sintesi del controllore , un corso di Controlli Automatici debba fornire gli strumenti per quantificare questi due requisiti , mediante un'opportuna analisi dei sistemi di controllo: si perverrà quindi a concetti come il margine di fase e margine di guadagno ( per quantificare la stabilità ) o ai parametri per descrivere la risposta in regime transitorio e in regime permanente, o ancora alla sensibilità che quantifica la reazione del sistema alle variazioni parametriche.
L'analisi che seguirà nei prossimi paragrafi sarà comunque costantemente "orientata alla sintesi" :

- lo studio della stabilità terrà conto del fatto che lo schema di controllo più diffuso è quello a controreazione e ci si chiederà quali condizioni deve rispettare la funzione di trasferimento in catena aperta F(s) perché il sistema a ciclo chiuso sia stabile ( criterio di Nyquist ).

- non potendo caratterizzare in modo esaustivo la risposta del sistema ( è impensabile considerare l'andamento analitico della risposta per tutti i possibili ingressi o disturbi ) , ci si limiterà a considerare le classi di stimoli più diffuse nei sistemi di controllo : il gradino unitario per la risposta transitoria, i polinomi e le sinusoidi per la risposta a regime permanente (tali restrizioni non sono comunque eccessivamente limitanti finché si resta nell'ambito dei sistemi lineari stazionari. Diversa è la questione passando a considerare sistemi non lineari) . Allo stesso tempo la caratterizzazione della risposta del sistema avverrà mediante pochi parametri significativi ( tempo di salita sovraelongazione , tempo di assestamento ) che avranno un immediato corrispettivo in alcune caratteristiche del controllore da progettare ( banda passante , modulo alla risonanza della funzione di trasferimento in catena aperta).

--> Clicca qui per la bibliografia

Read more...

Proprietà del Controllo in Controreazione

--> Clicca qui per la bibliografia

Esempi di schemi di controllo e proprietà del controllo in controreazione

 
Per chiarire il significato degli schemi di controllo presentati nel paragrafo precedente , ed evidenziarne pregi e difetti, si può considerare come esempio il controllo del livello del liquido in un serbatoio. Il serbatoio eroga un flusso nominale Qu verso una rete utilizzatrice : la variabile controllata è il livello L , mentre la variabile controllante è il flusso in entrata Qi ( Qu è un parametro del modello , sul quale non è consentito agire ). Le tre strategie si traducono nelle seguenti azioni di controllo:

- il controllo in catena aperta consiste nel fornire al serbatoio un flusso in entrata pari al flusso nominale in uscita. Se però la rete utilizzatrice presentasse per un certo intervallo di tempo un fabbisogno inferiore a quello nominale , i due flussi non si compenserebbero ed il livello del serbatoio tenderebbe a salire oltre il valore desiderato ( col rischio di un overflow ). Questa situazione è mostrata in figura 1.
Figura 1 : Il controllo del serbatoio secondo lo schema in catena aperta
- il controllo con compensazione diretta consiste nel misurare con un rivelatore di portata il flusso in uscita Qu e fornire in ingresso lo stesso valore per Qi . Questa soluzione ovvia al problema delle variazioni dovute al fabbisogno della rete utilzzatrice, ma non è in grado di rilevare, ad esempio, possibili variazioni dovute all'evaporazione del liquido o ad eventuali perdite nel serbatoio. Questa situazione è mostrata in figura 2. 
Figura 2 : Il controllo del serbatoio secondo lo schema a compensazione diretta
- l'unica soluzione che permette di rilevare tutti questi disturbi agenti sul sistema è l'introduzione di un galleggiante , o di un qualsiasi altro trasduttore di livello, in modo da calcolare il flusso in entrata come funzione della differenza L-Ldes ( segnale errore ). Questa scelta corrisponde allo schema di controllo in controreazione ( figura 3 )
Figura 3 : Il controllo del serbatoio in catena chiusa secondo lo schema a reazione negativa
L'esempio evidenzia due delle proprietà fondamentali del controllo a controreazione:

- riduzione degli effetti dovuti a variazioni parametriche nel modello del processo ( ad esempio le variazioni del flusso in uscita ) ; 

- riduzione dell'effetto dei disturbi in uscita al processo ( ad esempio le variazioni dovute all'evaporazione e alle perdite del serbatoio ) . 

Il caso del serbatoio permette inoltre di esemplificare uno dei limiti entrinseci della controreazione stessa : la necessità di una informazione attendibile sull'uscita. Si dimostrerà in seguito che l'errore di trasduzione si può schematizzare come un rumore additivo sul ramo di retroazione : a differenza dei disturbi in uscita e nel ramo diretto, che possono essere ridotti dalla retroazione progettando opportunamente il controllore, questo genere di disturbi si ripercuote interamente sull'uscita . Tornando all'esempio del serbatoio, perché il sistema di controllo mantenga con buona approssimazione il livello del liquido attorno al valore desiderato è necessario scegliere un buon galleggiante o un buon trasduttore di livello.
 

--> Clicca qui per la bibliografia

Read more...

Appunti di Controlli Automatici

Introduzione all'automatica

 
In automatica controllare un sistema significa calcolare un’azione o una sequenza di azioni che facciano assumere ad una grandezza di interesse un opportuno valore o una opportuna sequenza di valori. Tale grandezza viene detta grandezza controllata e riguarda solitamente un processo fisico , il processo da controllare. Nel corso di Controlli Automatici si guarda al processo secondo l’approccio della teoria dei sistemi; lo si considera cioè un oggetto astratto orientato dotato di ingressi ed uscite : le uscite sono le grandezze da controllare e gli ingressi sono le grandezze controllanti . In questo modo è possibile stimare un modello del processo a partire dal quale si calcola l’azione di controllo .
Figura 1 : la rappresentazione del processo secondo la teoria dei sistemi
Si parla di controlli automatici perché il calcolo e l’attuazione dell’azione di controllo vengono svolti da dispositivi che sostituiscono del tutto o in parte l’azione dell’uomo. L’insieme di questi dispositivi viene solitamente indicato col nome di controllore, che nei controllori più semplici ha la struttura indicata in figura 2.
Figura 2 : Lo schema di controllo in catena aperta
Tale schema , che viene detto controllo in catena aperta , da luogo a prestazioni scadenti e trova impiego solo in situazioni particolari ( ad esempio quando l’attuatore è un motore passo-passo) , perché non tiene conto dello scostamento fra uscita reale e uscita del modello. Questo scostamento è dovuto sostanzialmente a due cause : 

- il modello del processo non può essere conosciuto con esattezza ( dinamica non modellata e variazioni parametriche nel modello del processo ) ;

- sul sistema agiscono rumori e disturbi che non sono completamente noti . 

 
Per questo motivo nei controlli automatici si preferisce adottare lo schema a controreazione , mostrato in figura 3, che calcola l’azione di controllo a partire dalla differenza fra uscita desiderata e uscita effettiva . Questa differenza viene detta segnale errore : il compito del controllore è proprio quello di far tendere a zero il segnale errore , soddisfando alcune specifiche sulle prestazioni globali del sistema , che saranno descritte più avanti. Se anziché la differenza si effettuasse la somma fra ingresso e uscita del sistema si parlerebbe di reazione positiva e non di reazione negativa o controreazioneLa reazione positiva trova scarsa applicazione in controlli automatici , perché causa di instabilità : in elettronica questa instabilità viene invece sfruttata per realizzare gli oscillatori.
Figura 3 : Lo schema di controllo in catena chiusa
E' possibile anche una terza strategia di controllo, che si applica quando è verificata una condizione particolare : si hanno informazioni a priori sui disturbi che agiscono sul processo. Il disturbo deve quindi essere parzialmente noto o almeno misurabile e allora si parla di schema di controllo a compensazione diretta , che è mostrato in figura 4.
Figura 4 : Lo schema di controllo a compensazione diretta
I sistemi basati esclusivamente sulla compensazione diretta sono comunque relativamente rari , perché presentano svantaggi simili al controllo in catena aperta : se l'informazione sul disturbo si degradasse o se l'azione di controllo fosse diversa da quella progettata, non si avrebbe alcun riscontro sul reale andamento dell'uscita. Per questo motivo , quando si conosce almeno in parte il disturbo agente sul processo, si preferisce combinare i vantaggi del controllo a compensazione diretta con quelli del controllo in catena chiusa ricorrendo ad uno schema di controllo ibrido come quello mostrato in figura 5.
Figura 5 : Lo schema di controllo ibrido che combina i vantaggi della compensazione diretta e della controreazione
Read more...

L'obbligo di progetto degli impianti secondo il DM 37/08 ( Ex Legge 46/90 ) e la guida CEI-02

LA LEGGE 46/90 E IL D.M. 37/08 : UN PO' DI STORIA

Più di 30 anni fa , per installare un impianto elettrico, elettronicoidraulico , di riscaldamento e condizionamento,  trasporto del gas , di ascensori , e sistemi antincendio, non erano necessario dimostrare allo stato italiano di possedere particolari requisiti tecnico-professionali. Chiunque poteva diventare elettricista o diventare idraulico , la scelta era lasciata ai clienti che potevano scegliere sul mercato l'elettricista o l'idraulico che ritenevano più affidabile o , qualche volta, provvedere addirittura alla realizzazione autonoma del proprio impianto di casa.

La legge 46/90 costituì in questo campo una vera e propria rivoluzione in quanto :

  • stabilì determinati requisiti tecnico professionali per potersi registrare alla camera di commercio come abilitati all'installazione di impianti :
    1. di produzione, di trasporto, di distribuzione e di utilizzazione dell'energia elettrica all'interno degli edifici a partire dal punto di consegna dell'energia fornita dall'ente distributore;
    2. radiotelevisivi ed elettronici in genere, le antenne e gli impianti di protezione da scariche atmosferiche;
    3. riscaldamento e di climatizzazione azionati da fluido liquido, aeriforme, gassoso e di qualsiasi natura o specie;
    4. idrosanitari nonché quelli di trasporto, di trattamento, di uso, di accumulo e di consumo di acqua all'interno degli edifici a partire dal punto di consegna dell'acqua fornita dall'ente distributore;
    5. impianti per il trasporto e l'utilizzazione di gas allo stato liquido o aeriforme all'interno degli edifici a partire dal punto di consegna del combustibile gassoso fornito dall'ente distributore;
    6. sollevamento di persone o cose per mezzo di ascensori, di montacarichi, di scale mobili e simili; g) gli impianti di protezione antincendio.
  • stabilì i limiti dimensionali entro cui questi impianti dovevano essere progettati da un progettista iscritto all'albo ( ingegnere o perito );
  • determinò per tutti gli impianti realizzati l'obbligo di redarre una dichiarazione di conformità; questa dichiarazione divenne fondamentale per ottenere i certificati di agibilità, abitabilità, prevenzione incendi dando un rapido sviluppo alla messa a norma degli impianti negli immobili italiani.

La legge 46/90 "sopravvisse" per quasi 18 anni, allorché nel 2008 venne abrogata e sostituita, restringendone alcuni limiti ma riprendendone a grandi linee gli obiettivi, dal Decreto Ministeriale nr.37 .

L'OBBLIGO DI PROGETTO DEGLI IMPIANTI ELETTRICI SECONDO IL D.M. 37/08

Il D.M. 37/08 , che ha sostituito la legge 46/90 , definisce i limiti entro cui è necessario il progetto di un impianto elettrico , definito  "i circuiti di alimentazione degli apparecchi utilizzatori e delle prese a spina con esclusione degli equipaggiamenti elettrici delle macchine , degli utensili e degli apparecchi elettrici in genere" .

Il progetto non è necessario per gli impianti che non ricadono nel D.M. 37/08 ovvero impianti totalmente all'aperto e impianti nei cantieri edili. Il progetto può essere realizzato in alcuni casi anche dal responsabile tecnico della ditta installatrice , in altri è necessario che lo stesso sia redatto da un professionista iscritto all'albo.

I casi in cui il progetto deve essere redatto da un professionista iscritto all'albo , sono :

1) impianti elettrici di unità immobiliari ad uso abitativo ( impropriamente noti come "impianti elettrici civili" ) o a studio professionale o a sede di persone giuridiche private , circoli o conventi o associazioni se :
1a) sono caratterizzati da superficie superiore a 400 mq oppure :
1b) comprendono una centrale termica a gas di potenza superiore a 35KW oppure :
1c) hanno classe di compartimento antincendio superiore o uguale a 30 oppure :
1d) comprendono locali adibiti ad uso medico

2) impianti elettrici di servizi condominiali se :
2a) la potenza impegnata è superiore a 6KW oppure:
2b) comprendono una centrale termica a gas con potenza superiore a 35KW oppure :
2c) se la classe di compartimento antincendio è superiore a 30 oppure :
2d) se comprendono un'autorimessa condominiale con capienza di veicoli superiore a 9 che NON si affacci su uno spazio a cielo libero oppure :
2e) sono caratterizzati da un'altezza di gronda superiore a 24m

3) impianti elettrici di locali adibiti ad attività produttive ( impropriamente noti come "impianti elettrici industriali " ) , commerciali e del terziario se :
3a) comprendono cabina di trasformazione propria oppure :
3b) hanno superficie superiore a 200mq oppure :
3c) sono situati il luogo con pericolo di esplosione o a maggior rischio di incendio
3d) comprendono locali adibiti ad uso medico

E' inoltre previsto l'obbligo di progetto per modifiche a impianti esistenti non rientranti nella manutenzione ordinaria o straordinaria , quando il vecchio o il nuovo impianto siano soggetti a obbligo di progetto secondo quanto detto in precedenza.

IL PROGETTO PRELIMINARE E IL PROGETTO ESECUTIVO SECONDO LA GUIDA CEI 0-2

Per gli impianti che secondo iil DM 37/08 sono soggetti ad obbligo di progetto , si rimanda alla guida del Comitato Elettrico Italiano CEI 0-2 ( Guida per la definizione della documentazione di progetto degli impianti elettrici ) , la quale distingue fra due fasi successive della progettazione :

1) il progetto di massima o preliminare , che necessita di un minor grado di dettaglio in quanto viene redatto prima che sia prima che sia posto in opera l'impianto e viene utilizzato per studi di fattibilità , valutazione dei costi , richieste di concessioni edilizie ed eventuali autorizzazioni alla costruzione da autorità competenti ( ad esempio i Vigili del Fuoco ) .
2) il progetto definitivo o esecutivo , che viene invece redatto quando si conoscono le caratteristiche dell'impianto in ogni suo aspetto , compresi i modelli , i costi e le caratteristiche dei componenti elettrici installati . Deve quindi descrivere l'impianto in maniera esaustiva mediante relazioni tecniche , schemi per la disposizione funzionale dei componenti ( ad esempio gli schemi unifilari o multifilari dei quadri di distribuzione ) , planimetrie per la disposizione topografica dei componenti elettrici.

E' il caso di notare che tale suddivisione in livelli ha valore indicativo e non vincolante , in quanto espresso da una guida CEI e non da una norma . Mentre infatti le norme CEI determinano una condizione sufficiente per la progettazione di un impianto elettrico a regola d'arte , secondo la legge n.186 del 1° Marzo 1968 , le guide CEI hanno un mero valore di indirizzamento. E' comunque caldamente consigliato , per evitare malintesi con il committente o con l'eventuale direttore dei lavori , che si faccia riferimento alla CEI 0-2 nella stesura della documentazione di progetto ( non un obbligo , ma uno standard di riferimento , in sostanza ) .
La Legge Merloni Bis
I livelli del progetto definiti dalla guida CEI 0-2 non vanno confusi con quelli indicati dalla Legge n. 216/95 , detta anche legge Merloni Bis , che regola invece la documentazione di progetto delle opere pubbliche nel loro insieme : non riguarda cioè il solo impianto elettrico , ma anche quello idro-sanitario , l'impianto di riscaldamento , ecc. Le possibili confusioni sono indotte dalla nomenclatura utilizzata da tale legge , che individua tre livelli di progetto indicati con "progetto preliminare" , "progetto definitivo" e "progetto esecutivo". Il progetto di massima secondo la legge 46/90 coincide infatti con il progetto definitivo della 216/95 , mentre il progetto definitivo della 46/90 coincide con il progetto esecutivo della 216/95 [1] . In pratica la Legge Merloni Bis introduce un ulteriore livello iniziale rispetto alla 46/90 , che viene indicato con preliminare.

Read more...

Sezionatore , Sezionatore Sotto Carico e Interruttore di Manovra Sezionatore. Glossario Norme CEI Lettera S

SEZIONATORE

Il sezionatore è un dispositivo in grado di assicurare , nelle condizioni di "aperto" il sezionamento del circuito a valle. L'apertura e la chiusura del sezionatore deve avvenire "a vuoto" , ovvero con correnti di intensità trascurabile : perciò il sezionatore viene solitamente impiegato per garantire la sicurezza in operazioni di manutenzione sul circuito.

Il sezionatore non è adatto all'apertura del circuito quando su di esso circola la corrente nominale e tantomeno correnti di sovraccarico e di cortorcicuito , ma deve essere in grado di portare ( nella condizione "chiuso" ) la corrente nominale dichiarata da costruttore. Il costruttore deve inoltre indicare la corrente che il sezionatore è in grado di sopportare in condizioni anormali di circuito ( Icw : corrente ammissibile di breve durata ) : tale corrente ha la durata convenzionale di 1s ed entro tale tempo il circuito deve essere aperto mediante un interruttore automatico ( che protegge il sezionatore dal cortocircuito e dal sovraccarico come qualsiasi altro componente elettrico ).

SEZIONATORE SOTTO CARICO E INTERRUTTORE DI MANOVRA SEZIONATORE

Il termine Sezionatore sotto carico è utilizzato soprattutto nell'ambito della media tensione ( MT ) per indicare un dispositivo che , oltre alla funzione di sezionatore , svolge anche la funzione di aprire il circuito quando su di esso circola la corrente nominale. In bassa tensione (BT) la dizione utilizzata è Interruttore di manovra - sezionatore (IMS)

( Riferimenti : CEI 23-11 , CEI 64-8 )

Read more...

Zone di pericolosità della corrente elettrica. Glossario Norme CEI Lettera Z

ZONE DI PERICOLOSITA' DELLA CORRENTE ELETTRICA

Quando si parla di pericolosità della corrente elettrica si fa riferimento , convenzionalmente , ad una suddivisione su base statistica del piano (t,I) , dove I è il valore della corrente ( in mA ) che attraversa un corpo di un individuo medio per un tempo t ( espresso in ms ) . Il piano viene suddiviso in 4 zone , come in figura 1 , a seconda della pericolosità degli effetti procurati dalla corrente stessa:
1) in zona 1 , ovvero per correnti inferiori a 0.5mA , non si hanno abitualmente reazioni percettibili
2) in zona 2 si hanno reazioni del corpo umano , ma senza effetti fisiologicamente pericolosi
3) in zona 3 si hanno effetti pericolosi , ma reversibili , che abitualmente si concludono senza danni organici : contrazione dei muscoli, difficoltà respiratorie , difficoltà nella formazione e nella conduzione degli impulsi del cuore , fino alla possibilità di arresto cardiaco. Non è tuttavia contemplata la possibilità di fibrillazione ventricolare , che costituisce la più probabile causa di morte in questi casi. Al crescere del tempo di esposizione , va comunque contemplata la possibilità di ustioni per effetto termico.
4) in zona 4 , invece , è prevista una certa possibilità di incorrere nella fibrillazione ventricolare , via via più probabile superando le curve c2 ( 5% ) e c3 ( 50% ) in figura 1.

( Riferimenti : CEI 64 - fascicolo 4985 art. 4.5 )

La figura 1 si riferisce ad una corrente alternata con frequenza fra i 15Hz e i 100Hz ed un percorso ipotetico che va dalla mano sinistra ai piedi. Per dedurre gli effetti equivalenti ( soprattutto in termini di probabilità della fibrillazione ventricolare) che una stessa corrente I , a parita di tempo di esposizione , avrebbe in caso di percorsi diversi attraverso il corpo del soggetto interessato , viene definito un fattore di percorso F tale che : Ieq=I/F .

Alcuni valori del fattore di percorso , per diversi possibili percorsi , sono riportati di seguito :
- mano sinistra - mano destra : F=0.4
- mano destra - piedi : F=0.8
- schiena - mano destra : F=0.3
- schiena - mano sinistra : F=0.7
- torace - mano destra : F=1.3
- torace -mano sinistra : F=1.5
- glutei - mani : F=0.7

Se ne deduce che i casi più pericolosi si hanno in caso di corrente fluente fra mano destra e mano sinistra o fra mano destra e schiena. Viceversa , se uno dei "poli" di ingresso/uscita della corrente è il torace , la pericolosità si riduce anche sensibilmente.

( Riferimenti : CEI 64 - fascicolo 4985 art. 4.5 ) 

Read more...

Rischio in Caso di Incendio , Classificazione dei Luoghi. Glossario Norme CEI Lettera R

RISCHIO IN CASO DI INCENDIO , CLASSIFICAZIONE DEI LUOGHI 

La classificazione del rischio in caso d'incendio segue due diversi criteri normativi a seconda dello scopo della classificazione stessa. Se lo scopo è il progetto dell'impianto elettrico , le norme CEI distinguono fra
- Luoghi Ordinari
- Luoghi a Maggior Rischio in caso d'incendio ( detti in gergo anche luoghi "marci" , secondo l'acronimo [MA]ggior [R]ischio [C]aso [I]ncendio )

Se lo scopo è invece la valutazione del rischio per i lavoratori dipendenti ai sensi dell'art.4 del D.Lgs 626/94 ( secondo le procedure indicate nel D.M. 10/3/98 ) , gli ambienti si possono classificare in :
1) Luoghi con livello di rischio elevato
2) Luoghi con livello di rischio medio
3) Luoghi con livello di rischio basso.

Che relazione debba esserci fra le due classificazioni è questione dibattuta , poichè la sezione 715 della norma CEI 64-8 ( quella dove vengono riportate le prescrizioni sull'impianto elettrico nel caso di maggior rischio in caso d'incendio ) non fornisce una procedura quantitativa per la classificazione del luogo ( afferma anzi esplicitamente che la classificazione esula dallo scopo della norma stessa ) e si limita a segnalare :
-aspetti qualitativi da tenere in considerazione nella valutazione del rischio in caso d'incendio ( densità di affollamento , entità del danno , presenza di materiali combustibili e/o infiammabili )
-esempi di luoghi a maggior rischio in cado d'incendio.

Tuttavia la constatazione che tutti i luoghi esemplificati dal CEI sono classificabili come ad elevato rischio o a medio rischio ai sensi del D.M. 10/3/98 , porta quasi tutti i progettisti a concludere che , qualora il datore di lavoro abbia valutato il luogo come a rischio medio o elevato in caso d'incendio , questa classificazione possa essere adottata ( salvo valutazione di errori da parte del datore di lavoro stesso ) come "dato di progetto" per la realizzazione dell'impianto elettrico secondo le prescrizioni della sez.715 della norma CEI 64-8

Read more...

Parti attive , Potere di Interruzione , Protezione di Backup. Glossario di elettrotecnica e norme CEI lettera P

PARTI ATTIVE

Le parti attive vengono definite come conduttori o parti conduttrici in tensione nel servizio ordinario. Fra queste è compreso il conduttore di neutro , ma non quello di protezione. ( Riferimenti : norma CEI 64-8 , art. 23.1 )

POTERE DI INTERRUZIONE

Il Potere di interruzione è una grandezza caratteristica dei dispositivi deputati ad aprire un circuito elettrico , quali interruttori , sezionatori , fusibili. Viene definita come la massima corrente che il dispositivo è in grado di "aprire" ( o interrompere ) : al di sopra di tale valore limite possono insorgere fenomeni che non assicurano l'assenza di corrente nei conduttori del circuito stesso ( come ad esempio l'instaurarsi di un arco elettrico persistente ).

La grandezza che più frequentemente viene confrontata con il potere di interruzione è la corrente di cortocircuito presunta ( Icp ) nel punto in cui il dispositivo di interruzione è installato : le norme prescrivono infatti che il potere di interruzione sia maggiore o uguale della corrente di cortocircuito presunta ( a meno di non ricorrere ad una protezione di back up ).

Negli interruttori automatici ad uso industriale (CEI 17-5) il potere di interruzione è ulteriormente classificato in :
b) potere di interruzione estremo ( Icu ) : è la massima corrente che il dispositivo è in grado di interrompere , senza garantire però il corretto funzionamento dopo il fenomeno ( ovviamente un corto-circuito ) .
a) potere di interruzione di servizio ( Ics ) : è la massima corrente che il dispositivo è in grado di interrompere garantendo il corretto funzionamento anche dopo l'interruzione. A seconda dell'interruttore Ics può essere 1/4 Icu o 1/2 Icu o 3/4 Icu o pari a Icu stessa ( per cui la distinzione non esiste ).

La distinzione non esiste nemmeno negli interruttori automatici per uso domestico e similare ( CEI 23-3 ) , nei quali si parla genericamente di potere di interruzione o di potere di interruzione nominale ( Icn ) .

Il potere di interruzione degli interruttori dipende dalle caratteristiche costruttive ; ragionando sulle proprietà di rigidità dielettrica dei corpi isolanti si deduce facilmente che le caratteristiche costruttive più importanti nel determinare il potere di interruzione sono :
1) il materiale isolante interposto fra i contatti ; a parità di altre caratteristiche gli interruttori in aria hanno potere di interruzione inferiore agli interruttori in olio , che a loro volta hanno potere di interruzione inferiore agli interruttori in esafluoruro di zolfo.
2) le dimensioni ; ovviamente il potere di interruzione aumenta con la distanza fra i contatti e quindi con la dimensione dell'interruttore stesso.

( Riferimenti : norme CEI 64-8/4 , CEI 17-5 , CEI 23-3 ) 

PROTEZIONE DI BACKUP

Il ricorso alla protezione di sostegno o protezione di back-up è una tecnica che permette di utilizzare una protezione contro il corto-circuito con potere di interruzione insufficiente ( cioè inferiore alla corrente di corto-circuito presunta nel punto in cui è installato il dispositivo ) , purchè :
1) si utilizzi a monte un dispositivo con potere di interruzione opportuno
2) il calcolo ( e la prova ) del potere di interruzione posseduto dalla combinazione delle due protezioni sia fornito dal costruttore dei dispositivi mediante opportune tabelle ( da cui discende che solitamente la tecnica del backup può avvenire solo fra dispositivi dello stesso costruttore ).

L'utilità del riconoscimento di questa tecnica da parte delle norme CEI ( norma CEI 64/8 art. 434.3.1 ) è evidente : si supponga ad esempio che un utilizzatore trifase sia rifornito dall'ente distributore (ENEL) in bassa tensione ( sistema TT ) e che il suo punto di allaccio sia nelle vicinanze di una cabina di trasformazione MT/BT dell'ente stesso. Per cause non dipendenti dalla sua volontà , l'utente si troverebbe con una corrente di cortocircuito presunta nel punto di allaccio di valore elevato e , se la tecnica del back up non rientrasse nella regola dell'arte , sarebbe costretto a ricorrere a interruttori magnetotermici ingombranti e molto costosi. Ricorrendo invece ad un interruttore generale automatico con potere di interruzione sufficiente e opportunamente coordinato con i dispositivi che gli sono a valle , il costo e l'ingombro di questi ultimi si riduce notevolmente

( Riferimenti : CEI 64-8 , art. 434.3.1 ).

Read more...
Subscribe to this RSS feed

ENG Service - ENerGy & ENGineEriNG
Indirizzo: Monte San Vito (AN) - Ufficio Commerciale H24: (+39) 333 2527289 - Email info@ingegneria-elettronica.com

Questo sito utilizza cookie tecnici e di profilazione propri e di terze parti per le sue funzionalità e per inviarti pubblicità e servizi in linea con le tue preferenze. Se vuoi saperne di più clicca qui.
Chiudendo questo banner, scorrendo questa pagina o cliccando qualunque suo elemento acconsenti all’uso dei cookie.